Sickle Cell Disease Symposium Connecting inflammatory biomarkers and SCD clinical severity : the lung complications perspective

Marqueurs de l'inflammation et sévérité clinique: le cas des complications pulmonaires

Marthe-Sandrine Eiymo Mwa Mpollo, PhD

November 5th, 2016

Sickle Cell Disease (SCD)

Treatment strategies

- Management of vaso-occlusive crisis
- Management of chronic pain syndromes
- Management of chronic hemolytic anemia
- Prevention and treatment of infections
- Management of the complications and the various organ damage syndromes associated with the disease
- Prevention of stroke
- Detection and treatment of pulmonary hypertension

Beyond RBC sickling, hemolysis other features/organ complications of SCD include

What is the connection between this single defect in RBC and those multi-organ complications?

Assumptions:

- 1) Produce by sickled red blood cells
- 2) Correlate with the severity of the disease pathophysiology

The Biomarkers Definitions Working Group (2001) defined a biomarker as 'a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention'.

Rees, British Journal of Haematology 2011 156, 433–445.

Placenta Growth Factor is produced by immature erythroid and not other hematopoietic cells

"From a clinical perspective, pulmonary complications namely, the acute chest syndrome and pulmonary hypertension — are the most common causes of death in patients with sickle cell disease." Gladwin, NEJM 2008

- Pulmonary hypertension: Incidence is 30% (Gladwin MT et al, 2004).
- Airway hyperreactivity and asthma reported to be 17% to 77% (Boyd JH. et al, 2006)
- Acute Chest syndrome (ACS): with an incidence rate of 50%, ACS is estimated to be responsible for 25% of SCD related deaths (Castro, Blood 1994; Platt, Blood Principles and Practice of Hematology 1995).
- Inflammation: Activated leukocytes have been shown to initiate vaso-occlusion (Wun T. et al, 2001).

Is PIGF a biomarker for pulmonary hypertension (PH)?

PIGF is elevated in adult patients with SCD and is associated with features of PH.

в

Variable	n	r	р
RBC_COUNT	123	-0.28	0.0017
lemoglobin	123	-0.27	0.0024
Absolute Reticulocyte count	123	0.07	0.4233
.DH	116	0.22	0.0153
SR	115	0.19	0.0465
CRP	114	0.30	0.0012
VBC count	122	0.19	0.0376
Endothelin-1	117	0.24	0.0087
RJV	123	0.38	P<0.0001

Sundaram, Blood 2010

PIGF overexpression in WT mice induces right ventricular hypertrophy and pulmonary hypertension

Sundaram, Blood 2010

Could PIGF be a biomarker for Acute Chest Syndrome (ACS)?

Leukotrienes: PIGF target genes are strongly associated with ACS

- ACS: lung complication believed to result from vaso-occlusions in the pulmonary circulation
- The leukotrienes, powerful inflammatory molecules, are potent vasoconstrictors in the pulmonary circulation.

PIGF-induced airway hyper-reactivity is associated with ACS

PIGF inhibition reduces both leukotrienes and airway hyperreactivity, ACS associated features

Eiymo, JCI 2015

Summary

PIGF, an inflammatory mediator released by the sickle RBC connect the seemingly unrelated many diseases activities in SCD

Beyond RBC sickling, hemolysis other features/organ complications of SCD include

Lung

Acute chest syndrome Airway Hyper-reactivity Pulmonary hypertension Ongoing fibrosis pneumonia

Heart

Cardiomyopathy Premature coronary and artery disease

Gallbladder

Gallstones

Bones/joints

Bone marrow hyperplasia Avascular necrosies Dactilytis Osteomyelitis Aplastic crisis

Vascular damage

Pain

Stroke (brain) Central artery damage Retinal and artery occlusion/ retinopathy

Spleen

Splenic sequestration of RBC Autosplenectomy Chronic hypersplenectomy Impaired immunity

Kidney

Hypostenuria Papillary necrosis Renal failure

Genitals Priapism